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a b s t r a c t

The pressure evolution associated with the transient shock-induced infiltration of gas flow through
granular media consisting of mobile particles is numerically investigated using a coupled Eulerian
eLagrangian approach. The coupling between shock compaction and interstitial flow has been
revealed. A distinctive two-stage diffusing pressure field with deflection occurring at the tail of the
compaction front is found, with corresponding spikes in both gaseous velocity and temperature profiles
emerging within the width of the compaction front. The compaction front, together with the deflection
pressure, reaches a steady state during the later period. An analytical prediction of the steady deflection
pressure that considers the contributions of porosity and the non-isothermal effect is proposed. The
isothermal single-phase method we developed, combining the porosity jump condition across the
compaction front, shows consistent pressure evolution with the non-isothermal CMP-PIC one under
weak shock strength and low column permeability. Lastly, the microscale mechanism governing the
formation of not only pressure deflection but also gaseous velocity and temperature spikes within the
width of the compaction front has been described. These aforementioned evolutions of the flow field are
shown to arise from the nozzling effects associated with the particle-scale variations in the volume
fraction.
© 2023 The Authors. Publishing services by Elsevier B.V. on behalf of KeAi Communications Co. Ltd. This
is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/

4.0/).
1. Introduction

The shock-induced damage and transformation process finds
many applications in geotechnical engineering, including dynamic
compaction, shock densification, laser cutting and drilling of rocks,
hydraulic fracturing, rejuvenation of depleted borewell, etc.
(Goodarzi et al., 2015; Jagadeesh, 2008; Thallak, 1991; Xie et al.,
2021; Xu et al., 2020). Specifically, shock wave fracking has
become an alternative to hydraulic fracturing in shale rocks.
Reservoir deposits like Shale are formed of smectite minerals. Due
to the swelling property of smectite, the water used in hydraulic
fracturing reacts with the minerals and becomes trapped in the
reservoir, impeding the flow of gas into the well. Therefore, shock
wave fracking has a clear advantage in such situations, preventing
the clay mineral from swelling. Another important application is
related to increasing the yield of a depleted borewell using shock
waves. The high pressure behind the shock travelling into the
borewell acts normal to the walls of the borewell and helps in
y Elsevier B.V. on behalf of KeAi Co
clearing the clogged-up water channels (fissures, fractures, etc.)
present in rock formations, where water easily flows into the well.

The fundamental process underpinning these engineering ap-
plications is the dynamic responses of shale rock, which can be
simplified as the assembly of densely packed cemented mineral
grains subject to the impingement of shock waves. Understanding
the build-up of the interstitial pressure in the shock compacting
grains is critical to predicting resultant pneumatic fractures and to
improving design and diagnosis for engineering applications.
Considerable experimental and numerical efforts have been dedi-
cated to investigating the shock interaction with granular media
consisting of mobile or immobile particles (Poroshyna and Utkin,
2021; Zhang et al., 2022). Shock tube experiments provide in-
sights into the evolution of the diffusion pressure as gases infiltrate
through the interparticle pores as well as the propagation and
attenuation of stress waves sustained in the solid skeleton (Britan
et al., 2001). The stochastic nature of granular media results in
large variability between experimental results, making it difficult to
compare results from different granular media and draw general-
ized scaling laws. In contrast, in numerical investigations, this
variability is either eliminated by considering the granular media as
mmunications Co. Ltd. This is an open access article under the CC BY-NC-ND license
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homogeneous continuum materials or properly smoothing out the
variability by averaging over a number of assemblies with a sto-
chastic arrangement of particles.

Numerical approaches wherein granular media are approxi-
mated as homogeneous continuum materials can be roughly clas-
sified into single-phase and two-phase approaches (Jafari et al.,
2020; Skews, 2001; Sundaresan et al., 2018). In the single-phase
approach, the solid skeleton is assumed to be motionless, and the
particle-gas interactions are described by the flow resistance,
including viscous and inertial resistances, known as the Darcy term
and Forchheimer term, respectively (Britan et al., 2007). Using
single-phase approach, Britan et al. developed a full numerical
solution to predict the diffusion pressure of gas filtration through
dense granular mediawhile providing a scaling procedure between
pressure profiles arising from different combinations of granular
media and incident shock (Britan et al., 2006). In the scenario
involving intensified shock and loosely packed particles, the
compaction of particles becomes nontrivial so that the assumption
of the rigid solid skeleton no longer holds. In addition, gas tem-
peratures in the wake of the reflected shock markedly rises;
therefore, it is inappropriate to assume that the gas temperature is
equal to that of the solid granular material. To overcome these
limitations, the two-phase approach incorporates the volume-
averaged governing equations of the particle phase, which allows
for the variation in porosity. Additionally, the interphase energy
transfer is considered. To solve the macroscopic governing equa-
tions for separate phases, it is necessary to derive some comple-
mentary closures, which is challenging because the constitutive
relation of the particle phase with vastly varying porosities is still
lacking. Therefore, in most cases, the velocity of the particle phase
and the porosity variation are either assumed to be negligible or
imposed from experimental measurements (Eriksen et al., 2018).
Thus, we barely consider the spontaneous evolution of diffusion
pressure, which is strongly affected by the coupling between gas
filtration and particle compaction.

Instead of describing the particle phase as a continuummaterial,
the discrete element method (DEM) tracks individual particles and
accounts for interparticle contact/collision. The evolution of the
solid skeleton is the result of collective particle motions. Coupling
compressible computational fluid mechanics and DEM, referred to
as CMP-PIC in our proposed previous publications, allows us to
model the emergent shock compaction of mobile particles along-
side transient gas flows (Tian et al., 2020). Numerical studies reveal
the profile transition of diffusion pressure corresponding to the
development of the compaction front. A shoulder in the mono-
tonically decaying pressure profile emerges at the compaction
front, upon which the gas velocity is in balance with that of the
compacted particles. The deflection of the pressure at the
compaction front can also be reproduced by the single-phase
approach combined with the imposed compaction front condi-
tions. Because the single-phase approach does not consider the
width of the compaction front, which arises from the discreteness
of granular media, it cannot properly account for the pressure
distribution beyond the compaction front. The deviation between
the pressure profiles derived from CMP-PIC simulations and the
single-phase approach becomes significant as the effective Reynold
number, Ref, increases. Correspondingly, the non-isothermal effect
becomes appreciable and leads to a higher shoulder pressure than
that predicted by the isothermal single-phase approach. The non-
isothermal effect is manifested in the theoretical model of the
shoulder pressure, which also depends on the initial porosity.

Brief accounts of CMP-PIC and the single-phase approach will
now be presented in Section 2. The numerical setup is shown in
Section 3. The dynamic compaction of shock-loadedmobile particle
columns with varying porosities is described in Section 4.1. The
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corresponding pressure evolution is analysed in Section 4.2. We
reveal the coupling between the shock compaction and the build-
up of the diffusion pressure and proceed to propose the predic-
tion model of the shoulder pressure. The shock compaction and the
non-isothermal effect also contribute to the profile transition of the
transient velocity, as shown in Section 4.3. The density and tem-
perature profiles associated with gas filtration are introduced in
Section 4.4. The influence of unsteady flows at the upstream surface
is discussed in Section 5. A brief summary is given in Section 6.

2. Method

2.1. CMP-PIC

Numerical simulations were performed based on CMP-PIC, a
coarse-grained EulereLagrange approach suitable for gas-particle
flows in laboratory-scale systems (Koneru et al., 2020;
Sundaresan et al., 2018). The CMP-PIC approach tracks and accounts
for contact interactions between parcels. Each parcel consists of
multiple individual particles with the same physical and kinetic
properties. The number of real particles that constitute a compu-
tational parcel is quantified using a scaling factor called the super
particle loading, a2, whose value is set based on the volume/mass
fraction of the particles and computational memory available. For
particle-gas systems, the reported a2 in previous literature ranges
from O(101) to O(103) (Koneru et al., 2020; Osnes et al., 2017; Xue
et al., 2020). In this study, a2 is on the order of O(101).

For the gas phase, the volume-averaged governing equations
[Eqs. (1)e(3)] constructed in the Eulerian frame are based on a five-
equation transport model, which is a simplified form of the
BaereNunziato (B-N) model (Baer and Nunziato, 1986) that has
been modified to consider compressible multiphase flows ranging
from dilute to dense gas-particle flows (Carmouze et al., 2020;
Chiapolino and Saurel, 2020):
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The volume fraction of the gas phase (i.e., porosity) is expressed
by ε. The velocity, density, pressure, and total energy of the gas flow
are represented by uf, rf, Pf and Ef, respectively. Ef ¼ rf efþ0.5 rf ufuf,
where ef is the specific internal energy. rp.i and up,i are the density
and velocity of parcel i, Dp,i is the drag force coefficient of parcel i.
εp.i is the local porosity of parcel i. �uf is the average fluid velocity at
the location of parcel i, �up is the average parcel velocity over the
fluid cell. It is noteworthy that the first term on the right-hand side
of Eq. (2), PfVε, is the nozzling term that becomes significant
wherever the porosity gradient is non-trivial.

We use the Di Felice model combined with Ergun's equation to
calculate Dp, which is essentially a nonlinear drag force model (Di
Felice, 1994). The Di Felice model combined with Ergun's equa-
tion (Ergun, 1952), which considers the effects of both the particle
Reynold number, Rep, and the porosity, ε, has been widely used in
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particle-laden multiphase flows. Dp is a function of Rep and ε:
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where Cd is the dimensionless coefficient of the drag force; sg is the
specific weight of individual particles, where sg¼ rp/rf; and rp is the
particle radius. For dense particle flows (ε < 0.8), Eq. (4) reduces to
the original Ergun equation. Otherwise, Cd takes the form of Stok-
es's law multiplied by a factor of fbase, which varies with Rep, as
indicated by Eqs. (6) and (7).

The particle phase is represented by discrete parcels whose
motion is governed by Newton's second law [Eqs. (8) and (9)]:
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where up,i and xp,i denote the velocity and displacement of parcel i,
respectively; mp represents the mass of the parcel and FC,ij repre-
sents the collision force between parcels i and j.

A four-way coupling strategy (Ukai et al., 2010) was adopted to
account for the momentum and energy transfer between gases and
particles. Specifically, the drag force and the associated work from
particles were incorporated into the momentum [Eq. (2)] and en-
ergy [Eq. (3)] equations of the gas phase as the source terms. The
parcels are driven by the pressure gradient force, drag force, and
collision force between themselves [Eq. (8)]. A soft sphere model,
represented by a coupling spring and dashpot, was used to model
the collision force between parcels (Apte et al., 2003). FC,ij thus
consists of a repulsive force and a damping force:

FC;ij ¼ kn;pdn � gn;pun;ij (10)

where kn,p and gn,p are the stiffness and damping coefficients of
parcels, and dn and un,ij are the overlap and normal velocity dif-
ference between parcels in contact. gn,p is a function of the parcel
restitution coefficient εp (Crowe et al., 2012):

gn;p ¼ � 2 ln εpffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þ ln εp
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To solve the equations governing the gases, the weighted
essentially non-oscillatory (WENO) (Liu et al., 1994) scheme was
used to reconstruct the primary flow variables. A Riemann solver
proposed by Harten, Lax, and van Leer (Toro, 2009) was used to
obtain the intercell fluxes. The third-order RungeeKutta method
was applied for the time integration. The equations describing the
3738
parcel velocity and position were discretized by the velocity-
Verlet algorithm (Kruggel-Emden et al., 2008). Bilinear/trilinear
interpolation functions were used to calculate the particle volume
fraction and source terms on the Eulerian grids, as well as the fluid
variables on Lagrangian parcels. Numerical details with regard to
CMP-PIC are provided in the literature (Li et al., 2021; Meng et al.,
2019; Tian et al., 2020; Xue et al., 2020).

The present CMP-PIC framework has been validated against
Rogue's experiments involving shock waves propagating through
particle curtains (Tian et al., 2020), shock tube experiments
wherein particle columns are impinged head-on by incident shocks
(Tian et al., 2020), and shock dispersion of particle rings (Xue et al.,
2020). Fig. 1 shows a comparison of the experimentally and
numerically derived gaseous overpressure histories, DPf(t), regis-
tered upstream of and inside a granular column impinged by an
incident shock wave with a Mach number Ms ¼ 1.41 (van der
Grinten et al., 1985). The simulation was performed on a three-
dimensional configuration (see Fig. 1(a)) wherein a particle col-
umn with a volume fraction of 40 ¼ 0.7 consists of spherical fixed
particles with an average diameter of dp ¼ 0.375 mm, consistent
with the experiment. A good agreement between the simulation
results and the experimental measurements corroborates the reli-
ability of CMP-PIC in reproducing the shock-induced transient gas
flow through porous media. The pressure signal measurements
shown in Fig. 1(b) comprise contributions from both the viscous
and inertial resistances; thus, it is necessary to use the nonlinear
drag coefficient model in simulations.
2.2. Single-phase approach combined with shock compaction

The single-phase approach presented in this study is similar to
Morrison's approach to the problem of gas infiltration (Morrison,
1972). The evolution of interstitial gas pressure Pf inside the gran-
ular mediumwith porosity ε ¼ 1�4p and velocity up is given by the
equation:
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where m is the interstitial gas viscosity and k is the permeability of
the medium. For a granular medium composed of spherical gran-
ules, k is a function of the particle diameter, dp; and the granular
medium porosity, ε, through the following relation:

k ¼ 1
150

ε
3

ð1� εÞ2
d2p (13)

For the granular column composed of loosely packed mobile
particles, upon shock impingement, a compaction front (CF) begins
to traverse the particle layers at the velocity of VCF, across which the
volume fraction jumps from 40 to the maximum value 4comp, as
illustrated in Fig. 2(a). The compacted particles in the wake of the
CF gain the velocity of up,comp. Similarly, the upstream front of the
granular column moves at the velocity of up,comp. To properly
couple the gas infiltration with the dynamic particle compaction,
we attached the reference frame with the upstream front of the
granular column so that up in Eq. (12) equals zero for the compacted
particles and is replaced byeup,comp for the uncompacted particles.
The CF propagates at velocity VCF�up,comp with respect to the new
reference frame. The newly introduced variables, up, comp and VCF,
must be correlated with the properties of the granular medium and
the shock intensity. In literature (Li et al., 2021), we deduced the
expressions for up, comp and VCF based on the momentum equation
combined with the Rankine-Hugoniot condition across the CF:



Fig. 1. Pressure signals at four different locations of an air-filled porous medium. Solid lines: experiment; dashed lines: CMP-PIC calculations.

Fig. 2. Profiles of diffusing pressure inside the granular column with the rigid solid skeleton. Solid and dashed lines represent the analytical solutions given by Morrison's approach
and the numerical solution based on Eq. (12).
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where Pr is the reflected pressure at the upstream front of the
granular column and rp is the density of the particle material. For
granular columns with a typical 40 � 0.4, the shock reflection off
the upstream surface riddled with fine pores approximates that off
the solid surface (Skews, 2001). Thus, Pr is a function of the Mach
number of the incident shock, Ms:

Pr ¼
h
2gMs

2 � ðg� 1Þ
ih
ð3g� 1ÞMs

2 � 2ðg� 1Þ
i

ðgþ 1Þ
h
ðg� 1ÞMs

2 þ 2
i P0 (16)

Considering a steady boundary condition, the upstream surface
of a semi-infinite granular column is subject to a constant pressure,
Pf (x ¼ 0) ¼ Pr. Although the gaseous temperature and density
would immediately jump alongside Pf upon shock reflection, we
still assume an isothermal gas flow; therefore, the gas temperature
Tf is consistent with that of particles, Tf ¼ Tp ¼ Tamb. The gas density
3739
rf varies with the pressure Pf, rf ¼ Pf/RTamb, where R is the specific
gas constant.

To avoid numerical oscillation across the CF, instead of using a
Heaviside function, we use the Gauss error function as presented in
Eq. (17) to approximate the porosity and particle velocity discon-
tinuities across the CF:

erfðxÞ ¼ 2ffiffiffiffi
p

p
ðx
0

e�h2
dh (17)

The 4p and up gradually change from the compacted to the
uncompacted state across the CF with a finite thickness of wCF:

4pðxÞ ¼
4comp � 40

2
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�
4,

x� xCF
wCF

�
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2
(18)
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�
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2
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where xCF is the distance of the CF from the upstream surface of the
granular column, and xCF ¼ (VCF�ucomp)$t. The variations in 4p and
up when approaching the CF are demonstrated in the inset of
Fig. 2(a).

Appendix A elaborates the algorithm we used to numerically
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solve Eq. (12) with the reference frame fixed on the upstream
surface of the granular column. For a granular mediumwith a rigid
solid skeleton, dynamic compaction does not exist; therefore, Eq.
(12) is reduced to the conventional Darcy equation. The numerical
solution yields rise to pressure diffusion identical to that derived
from Morrison's approach, as indicated in Fig. 2(b). Note that the
pressure diffusion profiles depicted in Fig. 2(b) represent the dis-
tribution of scaled pressure, q ¼ (Pf e P0)/(Pr e P0), over the scaled
distance, c¼ x/L,where L is the length of the granular column. Each
diffusing pressure profile corresponds to one specific instant
denoted by the scaled time, ~t ¼ t/tsc, where the scaling factor for the
time, tsc ¼ L/Vsc. The scaling factor for the velocity, Vsc, is:

Vsc ¼ 1
150

P5 � P0
Lm

ð1� 40Þ2
42
0

d2p (20)

The same velocity and time scaling method is used throughout
this study.
Table 1
Parameters in numerical cases.

Group Case name Ms Pr 40 4comp k0 (10�12 m2)

G_Ms C-1.56-0.4 1.56 5.94 0.4 0.671 90
C-1.56-0.45 5.98 0.45 0.673 54.77
C-1.56-0.5 6.03 0.5 0.676 33.33
C-1.56-0.55 6.06 0.55 0.678 20.08
C-1.56-0.575 6.08 0.575 0.678 15.48
C-1.56-0.6 6.10 0.6 0.679 11.85
C-1.56-0.625 6.12 0.625 0.68 9.00
C-1.56-0.65 6.14 0.65 0.681 6.77

G_Ms C-2.04-0.5 2.04 15.00 0.5 0.707 33.33
C-2.04-0.55 15.11 0.55 0.709 20.08
C-2.04-0.575 15.17 0.575 0.711 15.48
C-2.04-0.6 15.22 0.6 0.712 11.85
C-2.04-0.625 15.28 0.625 0.712 9.00
C-2.04-0.65 15.36 0.65 0.712 6.77

G_40 C-1.56-0.5 1.56 6.03 0.5 0.676 33.33
C-1.83-0.5 1.83 10.54 0.685
C-2.04-0.5 2.04 15.00 0.707
3. Numerical setup

A two-dimensional configuration illustrated in Fig. 3(a) was
used to investigate the shock-induced pressure diffusion in shock-
compacting granular media, wherein a planar incident shock im-
pinges head on the upstream surface of a long granular column
composed of mobile spherical particles. The region ahead of the
incident shock and the intergrain pores are filled with ambient air,
P0 ¼ 1.0 � 105 Pa, T0 ¼ 298 K. Because the upstream and down-
stream boundaries are nonreflective, the pressure exerted on the
upstream surface of the column is kept constant, maintaining
consistency with the reflected pressure, Pr, described by Eq. (16).

The granular column domain was filled by computational par-
cels generated by the radius expansion algorithm. A population of
parcels with artificially small radii that ensures no particle or wall
overlap is randomly created within the specified volume. Then, all
parcels are expanded until the specified particle size distribution
and desired porosity are satisfied (Yan et al., 2009). The real particle
has a diameter of 100 mm, while the diameter of the parcel uni-
formly ranges from 400 to 750 mm to avoid potential crystallization
during shock compaction. The inset of Fig. 3(a) shows a close-up
image of the initial particle packing with 40 ¼ 0.5, wherein the
particles are coloured by the parcel-scale particle volume fraction,
4p,local, calculated using Voronoi tessellation. A random but ho-
mogenous arrangement of parcels is achieved regardless of the
overall volume fraction.

The parameters used in this study are Ms ¼ 1.54, 40 ¼ 0.5,
dp ¼ 100 mm, m ¼ 1.81 � 10�5 Pa s, and L ¼ 0.5 m.
Fig. 3. Schematic diagram of the shock tube-based setup in the numerical experiments. The
represents the case in which 40 ¼ 0.5.

3740
Among the parameters that affect gas infiltration through
granular media, the shock intensity manifested byMs and the initial
volume fraction, 40, play equally important roles in shock
compaction, as indicated in Eqs. (14) and (15). Thus, we devised two
groups of numerical experiments with varying Ms (Group_Ms) and
40 (Group_ 40) to assess the influences of these two parameters.
Table 1 lists the parameters of numerical cases that are required in
the single-phase modelling, wherein the initial permeability, k0, is
calculated by Eq. (13) with dp ¼ 100 mm. For clarity, the system is
labelled by Ms and 40, C-Ms-40. Note that the deviation of Pr from
the normal reflected pressure, P5, becomes increasingly discernible
as 40 decreases from 0.65 to 0.4. The volume fraction of the shock-
compacted particles, 4comp, also decreases as the initial packing
becomes increasingly looser and/or the shock intensity is reduced.
Pertinent parameters other than those listed in Table 1 are held
constant, including the density of particle material, where
rp ¼ 2500 kg/m3; the normal stiffness of contacts between parcels,
where kn ¼ 2.25 � 107 N/m; and the restitution coefficient, where
εp ¼ 0.6.

Notably, 40 and 4comp used in this study are those in the
equivalent 3D assemblies converted from the porosity correlation
between the 2D and 3D packings proposed by Borchardt-Ott
(2012):

ε3D ¼0:2595þ ε2D � 0:0931
0:2146� 0:0931

ð0:4760�0:2595Þ (21)

The values in Eq. (21), 0.2595 (0.4760) and 0.0931 (0.2146), are
associated with the states of maximum or minimum packing
close-up image of initial particle packing coloured by the local particle volume fraction
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density in 2D (3D) packings composed of monodispersed spheres.
This conversion correlation has been widely used to convert 42D to
43D, and vice versa. Accordingly, 3D particle volume fractions, 43D
from 0.4 to 0.65, correspond to 2D particle volume fractions, 42D
from 0.72 to 0.86. Considering the stochastic nature of the particle
packing, each numerical experiment was performed on at least five
realizations of granular columns to assess the variability in the
results. The results presented thereafter are averaged over multiple
realizations, while the error bars indicate the variability arising
from the stochastic packing structures.

4. Results and analysis

4.1. Dynamics of shock compaction

Fig. 4 shows a snapshot of an initially uncompacted granular
column in case C_1.56_0.5 a short time after shock impingement.
By rendering images of the parcels coloured by their instantaneous

velocity, u
�
p (Fig. 4(a)), and parcel-scale volume fraction, 4local

(Fig. 4(b)), the microscopic details of the CF formation are shown.
While parcels in the wake of the CF generally move with velocity
ucomp and parcels far ahead are stationary, we find velocities over
the entire range [0, ucomp] in a transition region centred at the CF.
Specifically, many finger-like chains of particles percolate thewidth
of the CF, causing roughness in the front. Whenwe plot the coarse-
grained velocity up vs. ~x ¼ x/dp (Fig. 4(c)), however, these rough
protrusions average into a smooth profile with a soft transition
from up¼ ucomp on the trailing edge of the CF (CFtail) to up¼ 0 on the
leading edge of the CF (CFhead). Similarly, the profile of the coarse-
grained local volume fraction, 4local(~x), also shows a corresponding
transition from 4comp to 40, as shown in Fig. 4(d). The positions of
CFtail and CFhead are determined in such a way that up (and 4local)
reaches 95% and 5% values of ucomp (and 4comp), respectively. At the
position of CF, up (and 4local) is the half value of ucomp (and 4comp).
The distance between CFtail and CFhead yields a measurement of the
Fig. 4. The formation of CF in case C_1.56_0.5. (a) and (b) Close-up images near the CF colou
(d) The coarse-grained particle velocity and local volume fraction profiles. (e) The evolutio
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CF's width, wCF. The existence of a finite wCF justifies the intro-
duction of a Gauss error function to describe the variations of up
and 4local across the CF in the single-phase numerical solution. The

evolution of the scaled CFwidth,w
�
CF ¼wCF/dp, is plotted in Fig. 4(e).

After a short inception phase, w
�
CF converges to a steady value,

w
�
CF ¼ 15.3, indicating the commencement of a steadily advancing

CF. This period of time required to reach steady state is represented

as t
�
st.
To describe when the compaction front becomes steady and

changes of the steady-state width of it, Fig. 5(a) shows the rela-

tionship between nondimensional steady-state time t
�
st as well as

nondimensional steady-state width w
�
CF and investigated parame-

ters (initial packing fraction and shock intensity). Numerical cases
with the same Mach number are represented by the same symbols.
The solid and dashed lines are fitting curves of these cases at cor-
responding Mach numbers. As reported in previous studies, the
steady-state width dramatically increases with increasing packing
fraction (Waitukaitis et al., 2013), while the steady-state time re-
duces rapidly. A stronger incident shock shortens the steady-state
time and leads to a sharper front. We not only focus on the width
of the compaction front, but also its movement. The propagation
velocity of the compaction front is prescribed in Eq. (15) and is
deduced from the bulk particle velocity in Eq. (14). The consistency
of the numerical results and prediction model is shown in Fig. 5(b),

while the scaled up,comp, u
�
p;comp ¼ up;comp=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðPr � P0Þ=rp

q
and

scaled VCF, V
�
CF ¼ VCF=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðPr � P0Þ=rp

q
points of our numerical cases

comply with the analytical prediction curves.
4.2. Diffusing pressure field

Fig. 6(a) and (b) show the pressure diffusion in cases C-1.56-0.5
and C-1.56-0.65, respectively, manifested by profiles of the coarse-
red by the local particle volume fraction and nondimensional particle velocity. (c) and
n of scaled CF width.



Fig. 5. (a) t
�
st and w

�
CF with 40 (b) The scaled up,comp and VCF with 40.
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grained scaled pressure, q(~x), of the simulated pressure fields as a
function of depth into the granular column at different times ~t after
the shock impingement. For comparison, Fig. 6(c) and (d) present
the respective single-phase numerical solutions. What is most
striking is the shape transition of q(~x) from a typical diffusion
profile to a two-stage profile that undergoes substantial deflection
upon the CF, more precisely the CFtail. Inside the compacted parti-
cles, the q(~x) profile exponentially decays from q(~x ¼ 0) ¼ 1 at the
upstream surface to a plateau pressure qplateau until approaching
the CFtail. Thereafter, q(~x) dramatically decreases to the ambient
Fig. 6. The scaled pressure diffusion evolution by CMP-PIC (a) C-1.56-0.5 (b) C-1.
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pressure far ahead of the CF, q (x
� � x

�
CFhead )¼ 0. A close inspection of

the CF formation (Fig. 4(e)) and pressure diffusion (Fig. 6(a)) reveals
the correspondence between the CF formation and the profile
transition of the diffusing pressure. The emergence of the CF results
in the deflection of q(~x) at the CFtail. The deflection pressure, qdeflect,
converges to qplateau at the end of the inception phase of the CF. The
profile transition of q(~x) also occurs in the single-phase numerical
solutions, although the transition is nearly completed instanta-
neously, indicating that the numerical solutions indeed adequately
account for the coupling between the shock compaction and the
gas infiltration.
56-0.65 and single-phase numerical solutions (c) C-1.56-0.5 (d) C-1.56-0.65.
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The initial volume fraction, 40, strongly affects the qplateau, as
evident in Fig. 6. The dependence of qplateau on 40 is shown in Fig. 7,
and a lower qplateau is observed in more densely packed granular
columns. The dependence of qplateau on 40 can be understood in
light of the Rankine-Hugoniot condition of the gaseous phase
across the CF. Fig. 8 shows the evolution of the scaled gas velocity

profile u
�
f ¼ uf=Vsc caused by pressure diffusion. Similar to the q(~x)

profiles, the u
�
f (~x) profiles undergo a significant shape transition

within the width of the CF, a prominent spike following the plateau

of u
�
f that ends at CFtail. With the steady advance of the CF, the

amplitude of the velocity spike remains consistent, suggesting no
net gas flow-in or flow-out within the thickness of the CF. With
respect to the propagating CF, the mass continuity of the gaseous
phase across the CF (see Fig. 9(a)) requires:

εcomprf ;CFtail

�
VCF � uf ;CFtail

�
¼ ε0r0VCF (22)

where rf ;CFtail and uf ;CFtail are the gas density and velocity at CFtail,
respectively. In contrast, the interstitial gases at CFhead are barely
disturbed so that rf ;CFhead ¼ r0, uf ;CFhead ¼ 0. During the steady shock
compaction phase, except for the portion near the upstream sur-
face, the compacted particles are markedly subjected to a uniform
pressure field leading to a negligible pressure gradient force, FVP, as
indicated in Fig. 6. The pressure plateau suggests minimum inter-
stitial gas velocity relative to the particles in this study, thereby
uf ;CFtail ¼ ucomp. The pressure plateau and the resulting velocity
equilibrium between particles and interstitial gas in thewake of the
CFhead are necessary for achieving a steady state of shock
compaction. As illustrated in Fig. 9(b), if the pressure profile slopes
downwards all the way into the CFhead, a velocity difference exists
between particles and interstitial gases at the CFhead, which scales
with the pressure gradient, Du ¼ uf�ucomp ~ (vPf/vx)CFtail. As the
length of the compacted pack increases, the slope of the pressure
profile becomes gentler, reducing the velocity difference Du.
Because ucomp remains consistent, uf decreases over time, which is
contrary to the self-similar velocity profile across the thickness of
the CF required by the steady state.

Considering the velocity equilibrium, uf ;CFtail ¼ ucomp, and
replacing rf ;CFtail (and r0) with Pf ;CFtail (and P0) using the ideal gas
EOS, Eq. (22) yield the expression of Pf ;CFtail :
Fig. 7. The dependence of qplateau on 40. Solid circular symbols: CMP-PIC simulations,
solid square: single-phase numerical solution, red line: non-isothermal predictions,
black line: isothermal predictions.
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Pf ;CFtail ¼
VCF

VCF � ucomp

1� 40
1� 4comp

Tf ;CFtail
T0

P0 (23)

Substituting Eqs. (14) and (15) into (23), the scaled pressure
plateau qplateau can be expressed as:

qplateau ¼ Pf ;CFtail � P0
Pr � P0

¼
"
ð1� 40Þ4comp�
1� 4comp

�
40

Tf ;CFtail
T0

� 1

#
P0

Pr � P0

(24)

The Mach number dependence of qplateau is implicitly man-
ifested by the temperature ratio Tf ;CFtail /T0, which is not considered
in the gas infiltration models assuming isothermal gas flows. Fig. 7
presents the analytical predictions of qplateau as a function of
40 under the isothermal and non-isothermal assumptions, indi-
cated by red and black curves, respectively. Solid square symbols
representing the qplateau derived from the single-phase numerical
solution, collapse onto the black isothermal curve, while solid cir-
cular symbols representing the qplateau derived from the CMP-PIC
simulations, scatter in a narrow band centred around the corre-
sponding red non-isothermal curves. Stronger incident shocks give
rise to both Pf ;CFtail and Pr, while a greater increase in Pr leads to a
decline in the non-isothermal curves. Particularly towards the
lower limit of 40, the non-isothermal curves elevate rapidly. Thus,
the non-isothermal effect becomes nontrivial for loosely packed
granular media subjected to stronger incident shocks. The Tf ;CFtail
used in the calculation of each non-isothermal curves is estimated
by assuming a linearly declining Tf (x) profile from Tr to T0:

Tf ;CFtail ¼ ðTr � T0Þ,qplateau þ T0 (25)

where qplateau is the isothermal value at the same initial packing
fraction, Tr is the temperature at the upstream surface of the
granular column caused by the shock reflection and can be calcu-
lated by:

Tr ¼
h
2ðg� 1ÞMs

2 � ðg� 3Þ
ih
ð3g� 1ÞMs

2 � 2ðg� 1Þ
i

ðgþ 1Þ2Ms
2

T0

(26)

A gas pressure precursor is long been reported to precede the
compaction wave in shock-loaded porous media that moves with
the same velocity as the compaction wave front, as shown in
Fig. 10(a) (Britan and Ben-Dor, 2006; Michiru et al., 1996). Stronger
compaction waves sustained in porous media with high porosities
result in precursors with higher amplitudes. Specifically, for the
polyurethane foams with a porosity ε ¼ 0.98 subjected to the
incident shock Ms ¼ 1.7, the precursor comprises approximately
half of the stress signal for the foam sample (Michiru et al., 1996).
The amplitude of the pressure precursor markedly increases upon
precursor reflection off the end-wall, giving rise to a gas pressure
peak at the end-wall that is even higher than the Pr at the upstream
surface. Regarding the origin of the pressure precursor, in-
vestigators speculated that the gas which initially filled the void
between the particles was pushed forwards by the compaction
wave towards the uncompressed granular medium and caused an
initial shoulder in the stress curves. We can justify the emergence
of the precursor in the light of the coupling between shock
compaction and gas infiltration. The volume fraction gradient
within the width of the CF results in the pressure gradient in this
study due to the nozzling term in the momentum equation (Eq.
(2)). The steeper the volume fraction gradient is, the sharper the
leading edge of the pressure profile becomes, causing an enhanced



Fig. 8. The scaled gas velocity profiles by CMP-PIC (a) C-1.56-0.5 (b) C-1.56-0.65 and single-phase numerical solutions (c) C-1.56-0.5 (d) C-1.56-0.65.

Fig. 9. (a) A schematic of the mass continuity of the gaseous phase across the CF (b) The relationship between the slopes of the pressure profile and the velocity difference.

Fig. 10. The pressure histories and significant precursors at different distances from the upstream surface. (a) Britan's work, 2006 (b) C-1.56-0.5 (c) C-1.56-0.65.
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pressure precursor. Fig. 10(b) shows the pressure histories at
different distances from the upstream surface, highlighting signif-
icant precursors at the beginning of the pressure traces. In contrast,
the much reduced volume fraction gradient across the width of the
CF in the initially densely packed granular leads to a much gentler
pressure slope, as shown in the close-up inset in Fig. 6(b). There-
fore, the plateau pressure decreases with the initial volume frac-
tion. The resulting pressure precursor becomes nearly negligible in
the case C-1.56-0.65, as shown in Fig. 10(c).

4.3. Formation of velocity spike at the CF

The microscopic mechanism underlying the gas velocity spikes
seen in Fig. 8(a) is illustrated in the close-up snapshot of the gas
velocity field in regions moving with the CF, as shown in Fig. 11(a).
Although the randomness of the particle arrangements is intrinsic
to the particle packing, the local variations in volume fraction and
particle velocity are most prominent across the thickness of the CF
caused by finger-like chains of particles that carry the majority of
the solid stresses (see Fig. 4(a) and (b)). As the interstitial gases
travel through the thickness of the CF, the flow would be acceler-
ated or decelerated as it navigates through the inhomogeneities
brought by the “clustered” particle chains, forming micro gas jets.
On average, the streamwise gas velocity surges as gases flow
through the thickness of the CF. This mechanism, often referred to
as the “nozzling” or the “channelling” effect, has been observed in
particle-resolved simulations of blast-induced gas infiltration
through particle beds. The nozzling effect attenuates as the gases
flow through the CFhead into the uncompacted particles where the
particle chains have not yet been formed. However, the micro gas
jets persist well ahead of the CFhead and push the particles against
each other. The ensuing collisions result in agglomeration and
formation of long force chains of particles that are about to be
compacted. With the aid of the micro gas jets, the roughness of the
CF is amplified compared with that formed in other dynamic
compaction with the absence of interstitial gas flows. Because the
nozzling effect is strongly mitigated in the initially densely packed
granular media where the particle agglomeration and the resulting
inhomogeneities are suppressed, the interstitial gas flows become
tempered with much weaker microjets, as shown in Fig. 11 (b).
Therefore, in contrast with the distinctive velocity spike exhibited
by the ~uf ð~xÞ profiles in case C-1.56-50, we can barely detect
noticeable spike in the ~uf ð~xÞ profile in case C-1.56-60
Fig. 11. Scaled gas velocity field and relative profile
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The formation of the velocity spike can also be accounted for by
the momentum balance of the interstitial gases as a continuous
phase. With the reference frame fixed at the steadily propagating
CF, the momentum equation of the interstitial gases becomes:

v
�
εrfuf

�
uf � VCF

��
vx

¼ FVP � Fdrag (27)

where FVP and Fdrag are the pressure gradient force [Eq. (28)] and
the drag force [Eq. (29)] exerted on the interstitial gases inside the
granular media with unit volume, respectively:

FVP ¼ �ε

vPf
vx

(28)

Fdrag ¼ ð1� εÞ,
"
150

�
1� ε

ε

�2
,
1

dp
2 m

�
uf � up

�

þ1:75
�
1� ε

ε

� rf

�
uf � up

�2
dp

3
75

(29)

Due to the mass conservation of the interstitial gases, we have:

v
h
εrf

�
uf � VCF

� i
vx

¼ 0 (30)

Thus, Eq. (27) becomes:

εrf

�
uf � VCF

� vuf
vx

¼ FVP � Fdrag (31)

where εrf(uf e VCF) is unvaried throughout the granular column.
Thus, the spatial variation in uf depends on the difference between
the magnitudes of FVP and Fdrag.

Fig. 12(a) and (b) show close-up images of the fields of FVP and
Fdrag in the neighbourhood of the CF, respectively. Similar to the
heterogeneous gas velocity field, the FVP and Fdrag fields also display
particle-scale heterogeneities originating from particle agglomer-
ation and micro gas jets. Further examination also indicates the
strong pattern correlation between the FVP and Fdrag fields. Specif-
ically, the samemicro gas jets experience strong FVP and Fdrag. Those
micro gas jets concentrate within the band between the CF and the
near the CF region. (a) C-1.56-50 (b) C-1.56-60.



Fig. 12. Fdrag and FVP fields and relative profiles in the neighbourhood of the CF. (a) and (b) C-1.56-0.5. (c) and (d) C-1.56-0.6.
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CFhead and disperse into the immediate region ahead of the CFhead,
again consistent with the distribution of micro gas jets distin-
guishable in the velocity field, as shown in Fig. 11(a). The profiles of
spanwise averaged FVP and Fdrag, FVP(x) and Fdrag(x), reach their
peaks at CFhead (see the bottom frames in Fig. 11(a) and (b)). The
rising sides of FVP(x) and Fdrag(x) result from the nozzling effect
inside the width of the CF, while the declining slopes are indicative
of the pressure diffusion in the uncompacted particles. The differ-
ences between FVP(x) and Fdrag(x) are plotted in Fig. 13(a), which
clearly shows a transition point at CFhead. Behind the CFhead, a
surplus is found between absolute FVP(x) and Fdrag(x), while beyond
the CFhead Fdrag(x) exceeds FVP(x). Accordingly, the gas flow accel-
erates all the way until it approaches CFhead and thereafter de-
celerates due to the stronger resistance.

The nozzling effect diminishes as the initial volume fraction of
the granular column, 40, increases. In case C-1.56-0.6, the FVP(x) and
Fdrag(x) profiles level off far from the upstream surface and trail
away beyond the CFhead, and any increases across the thickness of
the CF are barely discernible, as shown in Fig. 11(c) and (d). The
driving force of the interstitial gas flow, FVP(x), is always smaller
than the flow resistance, Fdrag(x), as shown in Fig. 13(b), causing the
persistent deceleration of gas velocity through the width of the CF.
Fig. 14 depicts the variation in amplitude of the scaled gas velocity
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spike, Du
�
spike ¼

�
uf ;CFhead � uf ;CFtail

�.
uf ;CFtail , with increasing 40,

where uf ;CFhead and uf ;CFtail are the gas velocities at CFhead and CFtail,

respectively. Du
�
f becomes negligible when 40 is increased beyond a

critical value, 40, cr, which decreases from 0.6 to 0.575 as Ms in-
creases from 1.56 to 2.04. Compared with the 40 dependence of
qplateau, qplateau becomes minimized (i.e., qplateau < 0.08). The two-
stage pressure profile degenerates into the typical diffusing pres-
sure profile with 40 higher than 40, cr. Thus, shock compaction tends
to be decoupled from gas infiltration in initially densely packed
granular media subjected to a strong incident shock.

As aforementioned the shape of the velocity spike depends on
the volume fraction variation within the width of the CF, which
changes with 40 and Ms. Since all the single-phase numerical so-
lutions engage the same 40(x) variation profile within the fixed
width of the CF, which is steeper than the real 40(x) profiles derived
from the simulations in most cases, the velocity spikes produced in
the numerical solution are more pronounced than those observed
in the simulations and assume a negatively skewed shape rather
than the positively skewed shape in simulations, as shown in
Fig. 8(c) and (d).

The gas surge within the width of the CF brings about the dy-
namic gas pressure, which makes a significant contribution to the



Fig. 13. The relationship between the differences in FVP(x) and Fdrag(x) and the velocity spike. (a) C-1.56-0.5 (b) C-1.56-0.6.

Fig. 14. The scaled gas velocity spike with increasing 40.
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gas pressure precursor when the magnitude of the interstitial gas
velocity is on the order of O(102) m/s, which is the case in porous
media with high porosities (ε~0.9). In this scenario, properly esti-
mating the gas peak velocity at CFhead as a function of 40 and Ms is
necessary to predict the pressure precursor, which should be the
focus of future research.

4.4. Profiles of thermodynamic variables

Fig.15(a) and (b) depict the evolutions of the scaled temperature

and density profiles in case C-1.56-0.5, where T
�
f ¼ Tf=Tr and r

�
f ¼

rf=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pr=Vsc

p
, where Tr is the gas temperature at the upstream sur-

face. In contrast to the constant gas temperature assumed by the

isothermal gas infiltration models, the T
�
f
�
x
��

profile exhibits
distinctive features along the depth into the granular column.

Specifically, a noticeable T
�
f peak is adjacent to the upstream sur-

face, followed by multiple kinks in the portion throughout the
compacted particles and a narrow spike across the width of the CF.
For a steady coupling between the shock compaction and the gas
infiltration signified by the constant ucomp and VCF, the converged
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qplateau, and self-similar profiles of the u
�
f and T

�
f spikes at different

instants, the momentum balance of the interstitial gases requires a
constant εrf(uf eVCF), or equivalently a constant ε Pf/Tf (uf e VCF)
throughout the diffusion depth into the granular column. Thus, the

variation in T
�
f is proportionate to the product of q and u

�
f � V

�
CF.

Considering the monotonic decaying q(~x) profile and the constant

V
�
CF, it is the distinctive features in the u

�
f
�
x
��

profiles that result in
the corresponding features in the q(~x) profiles. Specifically, the
velocity spike across the width of the CF if it exists causes the
temperature spike in this study, as shown by the overlapping of the
spikes of velocity and temperature (see the inset in Fig. 15(a)).
Fig. 16 shows the dependence of the amplitude of the temperature

spike, DT
�
spike ¼

�
Tspike � TCFtail

�.
Tr, on 40, where Tspike and TCFtail

are the sipke temperature and the gas temperature at the CFtail,

respectively. The correlation between DT
�
spike and 40 resembles that

between Du
�
spike and 40. The characteristics in the T

�
f
�
x
��

profiles are

also embodied in r
�
f
�
x
��

since rf ¼ Pf/RTf. Specifically, the steep
downstream facing decline side of the first temperature peak
adjacent to the upstream surface produces a moderate increase in

r
�
f , as shown in the close-up plot in the inset of Fig. 15 (b). However,

the temperature spikes across the width of the CF do not suffice to

guarantee an increase in r
�
f so that the r

�
f
�
x
��

profiles from the CFtail
onwards primarily inherit the characteristics of the q(~x) profiles.

The r
�
f
�
x
��

curves deflect from the plateau at the CFtail and proceed
with a sharp slope into uncompacted particles ahead of the CFhead,
as seen in the q(~x) profiles.
5. Discussion

The shock-induced gas infiltration through the granular media
may be influenced by the unsteady flows at the upstream surface.
Specifically, Britan et al. identified the unsteady flow patterns in-
side a shock-loaded granular column induced by unsteady loading
at the front surface of the column in shock tube experiments (Britan
et al., 2007). Once the rarefaction wave reflected from the end-wall
of the shock tube driver arrives at the front surface of the granular
column, the total stress and the gas pressure quickly decrease,
providing clear evidence that gas infiltration is an efficient tool in
relieving the stresses inside the granular medium when it is sub-
jected to a weak shock wave impact. They further developed a



Fig. 15. The evolutions of (a) the scaled temperature and (b) the scaled density profiles in C-1.56-0.5.

Fig. 16. The dependence of the scaled amplitude of the temperature spike DT
�
spike on

40.
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general approach for predicting the pressure fields of unsteady gas
flows through granular media, considering the unsteady boundary
conditions (Britan et al., 2006). Their approach is similar to the
single-phase numerical solution introduced in Section 2.2 but does
not incorporate shock compaction.
Fig. 17. (a) The pressure history measured at the moving upstream surface. (b)e(d) The profi
surface velocity.
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In the CMP-PIC simulations performed in this study, the re-
flected back rarefaction wave is absent due to the nonreflective
boundary conditions. The pressure history measured at the moving
upstream surface, Pupstream(t), also shows an initial unsteady phase,
as shown in Fig. 17(a). Instead of an instantaneous pressure jump
occurring at the normal shock reflection off the solid surface, Pup-
stream(t) undergoes a substantial increase during a short period of
time (tini~1 ms). Thereafter, Pupstream(t) converges to a steady value,
Pr, smaller than the reflected pressure resulting from the normal
shock reflection, P5. The initial increase phase of Pupstream(t) arises
from complex wave interactions ensuing the shock impingement.
Fig. 18(a) presents the diagram of the wave structure after shock
impingement upon the front surface of the rigid porous media first
contemplated by Levy et al. (1993). The penetration of the trans-
mitted shock wave through the front layer of the porous material
can be viewed as a sharp front, a transmitted front, TF, which
sweeps through the porous material while parts of it are reflected
back as the reflected shock front, RS. As the TF progresses down-
stream, parts of it are left behind, bouncing back and forth inside
the cavities of the pores. Some trapped transmitted fronts interact
with each other, and some even find away to emerge from the front
edge of the porousmaterial as weak compressionwaves, CW,which
eventually catch up with the primary RS and increase the pressure
field behind it. The emergence between the RS and a train of
catching-up CWs results in a downstream adverse pressure and
density gradient as well as a sloping down velocity profile in the
wake of the RS, as shown in Fig. 17(b)e(d). The higher 40 is, the
stronger the reflected compression waves become. Thus,
les of pressure, density and gas velocity for case C-1.56-0.4. (e) History of the upstream



Fig. 18. Diagram of the wave structure after shock impingement on the upstream surface (US) of (a) immobile and (b) mobile porous media.
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Pupstream(t) rises more rapidly in case C-1.56-0.6 than in case C-1.56-
0.4 (see Fig. 17(a)). When penetrating the porous material, the TF
becomes increasingly dispersed and eventually diminishes; there-
after, no more reflected compression waves are generated. This
process ends earlier in granular columns with higher 40, as seen in
Fig. 17 (a).

The build-up of Pupstream(t) is countered by the upstream trav-
elling rarefactionwaves, RW, issued from the accelerating upstream
surface whose velocity converges to ucomp after a short period of
acceleration, as plotted in Fig. 17(e). The rarefaction effects can be
identified by comparing the Pupstream(t) curves of the mobile
granular column and immobile one, as shown in Fig. 17(a). Without
the rarefaction waves, Pupstream of the immobile one increases to a
higher value than the mobile one. The deviation between them
increases as 40 decreases because the acceleration of the upstream
surface of the loosely packed granular column is more prom-
inent.The counter effect brought by the accelerating upstream
surface modifies the wave structure, as shown in Fig. 18(b).

Since we used relatively densely packed granular columns
(40 � 0.4) and particles with large inertia, the unsteady loading
phase of Pupstream is insignificant in terms of the duration and the
deviation of Pr from P5. However, for porous media with high po-
rosities (ε > 0.9) and light solid skeletons, the dissipation of the
transmitted wave and the acceleration of the upstream surface both
take much longer times so that the unsteady gas flows induced by
the unsteady loading condition play a nontrivial role in the gas
infiltration through the porous media.
6. Conclusion

In the present work, we describe the influence of the coupling
between shock compaction and gas infiltration on pressure diffu-
sion through a shock-loaded granular column via CMP-PIC and
modified single-phase simulations. We first introduce the CMP-PIC
method and propose a modified single-phase approach to investi-
gate non-isothermal effect. A series of numerical experiments is
conducted to assess the influence of shock intensity and initial
volume fraction. The characteristics of the formed compaction front
under shock-load are revealed. The compaction front maintains an
unsteady state only for a short period of time, and its width does
not change afterward. The formation of pressure deflection caused
by shock compaction is manifested, and a prediction model for the
steady deflection pressure is proposed. The non-isothermal effect
on the steady pressure becomes increasingly significant as the
incident shock strengthens and the initial volume fraction de-
creases. The nozzling effect, which originates from variations in
local particle volume fraction, is discovered as a micro-mechanism
for the deflection of the pressure profile as well as velocity and
temperature spikes inside the width of the compaction front. A
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threshold of the initial volume fraction is also identified, beyond
which the aforementioned spikes disappear while the difference in
the competitive relationship between pressure gradient forces and
drag forces becomes negligible. Finally, the scope of application is
discussed in terms of the effects of interfacial motion and initial
volume fraction on the pressure at the upstream surface.
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Appendix A. Numerical solution algorithm for the combined
single-phase approach

We attached the reference frame with the upstream front of the
granular column, which simplifies the moving boundary problem
into a fixed one. Eq. (12) becomes Eq. (A1) in this relative coordinate
system:
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εPf

�
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¼ 1
m
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�
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� i
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To solve the model proposed in Eq. (A1), we first define a grid
with Iþ2 nodes along the x-axis and Jþ2 nodes along the t-axis that
has integer indices i2[0, Iþ1] and j2[0, Jþ1]. Using a grid step size
Dx ¼ 1 mm, Dt ¼ 0.1 ms, I and J are determined from the length of
the column (L ¼ 0.5 m) and time (12 ms), respectively, I ¼ 500,
J ¼ 120000.

On this grid, all interior nodes with indices i2[1, I] represent a
position inside the cell, where xi ¼ i$Dx. The edge nodes, those with
indices i ¼ 0 and i ¼ Iþ1, represent the upstream and downstream
boundaries of the column, while those with indices j ¼ 0 represent
the initial conditions inside the granular column. Using these
points, we make discrete representations for the spatiotemporal
evolution of pressure, porosity and particle velocity,
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Using the first-order forward difference scheme and central
difference scheme at the half-point discretizing Eq. (A1) in the time
and space directions, we can obtain:
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where the pressure, particle velocity, porosity and permeability at
the half point are as follows:
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By discretizing Eqs. (18) and (19), the spatiotemporal evolution
of the porosity and particle velocity of all points with indices i2[0,
Iþ1] and j2[0, Jþ1] are obtained:

ε
j
i ¼

ε0 � εcomp

2
,erf

�
4,

xi � uCF,tj
wCF

�
þ ε0 þ εcomp

2
(A7)

�
up

�j
i ¼ �up;comp

2
,erf

�
4,

xi � uCF,tj
wCF

�
þ up;comp

2
(A8)

Using this explicit scheme, all interior points i2[1, I] at step j can
be derived from the information of points i2[0, Iþ1] at the previ-
ous step j-1:
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Considering the boundary conditions for Eq. (A9), the pressure
at the upstream surface approximately equals the pressure when
an incident shock wave is reflected head-on from a solid boundary,
Pr, as shown in Eq. (16). Before the completion of the filtration
process, the pressure at the downstream surface is kept ambient
pressure P0 unchanged:

Pf
�
0; t0;1;/;J;Jþ1

� ¼ Pr (A10)

Pf
�
L; t0;1;/;J;Jþ1

� ¼ P0 (A11)

At the starting moment of the flow filtration process, the pres-
sure inside the column is ambient pressure P0. Thus, the initial
conditions for the interior points are:

Pf
�
x1;2;/;I�1;I;0

� ¼ P0 (A12)

With solutions from Eq. (A9), together with the given boundary
conditions and initial conditions in Eqs. (A10)e(A12), the evolution
of the unsteady filtration pressure field over time is obtained.
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Glossary
English letters

Cd: dimensionless drag force coefficient
d: diameter, m
Dp: drag force coefficient, s�1

e: specific internal energy, J/kg
E: total energy, J
F: force, N
FC: the collision force, N
Fdrag: the drag force, N
FVP: the pressure gradient force, N
k: permeability, m2

kp: stiffness, N/m
L: length of granular column, m
m: mass, kg
Ms: mach number
P: pressure, N/m2

Pr: reflected pressure of the incident shock, N/m2

Pupstream: the pressure at the moving upstream surface, N/m2

r: particle radius, m
Rep: particle Reynold number
sg: specific gravity
t: time, s
~t: the scaled time
tini: the short period of time for the pressure at the moving upstream surface to

increase, s
tsc: the scaling factor for the time, s
t
�
st: the scaled time required for the compaction front to reach steady state

T: temperature, K
~T: the scaled temperature
Tr: temperature at the upstream surface of the granular column, K
u: velocity, m/s
~u: the scaled velocity
up,comp: velocity of shock compacted particles, m/s
u
�
p;comp: the scaled up,comp

VCF: the propagation velocity of the compaction front, m/s
V
�
CF: the scaled VCF

Vsc: the scaling factor for the velocity, m/s
~w: the scaled width of the compaction front
wCF: the width of the compaction front, m
~x: the scaled distance by particle diameter
xCF: the distance of the compaction front from the upstream surface of the granular

column, m

Greek letters

a2: super particle loading
c: the scaled distance by length of the particle column
D~uspike: amplitude of the scaled gas velocity spike
DT
�
spike: amplitude of the scaled temperature spike

d: overlap, m
ε: porosity
εp: restitution coefficient of the parcel
4: volume fraction
40: the initial volume fraction of the particle column
40,cr: the critical initial volume fraction of the particle column to form velocity and

temperature spikes
4local: local volume fraction of particles calculated through Voronoi tessellation
4comp: volume fraction of compacted particles
g: ratio of specific heat
gp: damping coefficient of parcel
m: dynamic viscosity, N$s/m2

q: the scaled pressure
qdeflect: the scaled deflection pressure
qplateau: the scaled steady deflection pressure
r: density, kg/m3

~r: the scaled density

Subscripts

f: fluid phase
n: normal direction
p: computational particle
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